PERANCANGAN TUNGKU PERLAKUAN PANAS TERMOKIMIA UNTUK APLIKASI BAJA TAHAN KARAT DENGAN PENDEKATAN REVERSE ENGINEERING
DOI:
https://doi.org/10.34128/je.v6i2.110Keywords:
Tungku Perlakuan Panas, Termokimia, Reverse Engineering, QFD, kelayakan ekonomiAbstract
Tungku perlakuan panas termokimia digunakan untuk meningkatkan sifat mekanis permukaan baja. Salah satu alternatif tungku tersebut adalah jenis atmosfer gas konvensional yang nilai ekonomisnya tinggi akibat biaya operasi yang rendah. Pada penelitian ini dilakukan studi terhadap konsep dan desain tungku gas perlakuan panas termokimia untuk bahan logam baja tahan karat jenis tube furnace. Pendekatan yang digunakan dalam penelitian ini yaitu pendekatan reverse engineering dimana produk JNL-1000 tube furnace diamati, dibongkar, dan dianalisa kemudian digunakan sebagai acuan untuk merancang sebuah produk baru yang memiliki keunggulan dibandingkan produk aslinya. Agar hasil desain tungku yang dibuat tepat sasaran kepada kebutuhan dan keinginan pelanggan, maka proses perancangan dianalisis menggunakan pendekatan Quality Function Deployment (QFD) serta kelayakan ekonomi dan keuangan. Hasil dari rancangan ini divisualisasikan dalam model 3D CAD. Hasil dari penelitian disimpulkan bahwa perbaikan rancangan tube furnace untuk perlakuan panas termokimia baja tahan karat ini yaitu adanya tambahan komponen gas turbulancer distributor pada bagian tabung tungku. Hasil rancangan telah memenuhi kelayakan ekonomi dan keuangan untuk diproduksi secara komersil.
References
[2] Atkinson, M., Barry, J., Boone, D., Ciampini, M., Greene, J., Marker, A., . . . Wright, A. (2007). Improving Process Heating System Performance: A Sourcebook for Industry (2nd ed.). Energy Efficiency and Renewable Energi;Industrial Equipment Association.
[3] Carbolite. (n.d.). Laboratory Chamber & Tube Furnaces. Hope Valley United Kingdom.
[4] Cristiano, J. J., Liker, J. K., & White, C. C. (2000). Customer-Driven Product Development Through Quality Function Deployment in the U.S. and Japan.
[5] Czerwinski, F. (2012). Heat Treatment Conventional and Novel Applications. Croatia: InTech.
[6] D.K.Pal, Ravi, D. B., Bhargava, L., & Chandrasekhar, U. (20015). Computer-Aided Reverse Engineering for Rapid Replacement Parts: A Case Study. Defence Science Journal.
[7] Datar, S. M., & Rajan, M. V. (2018). Horngren's Cost Accounting A Managerial Emphasis (6th ed.). United Kingdom: Pearson Education.
[8] Dieter, G. E., & Schmidt, L. C. (2009). Engineering Design (4th ed.). New York: McGraw-Hill.
[9] Eldessouky, H. (2010). Development and Assessment of a Reverse Engineering Framework for Spare Parts. Research Gate.
[10] Geren, N., BayramoÄŸlu, M., & EÅŸme, U. (20017). Improvement of a low-cost water jet machining intensifier using reverse engineering and redesign methodology. Journal of Engineering Design.
[11] Haruman, E., Sun, Y., Triwiyanto, A., Manurung, Y., & Adesta, E. (2011). An Investigation on Low-Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace . Journal of Materials Engineering and Performance.
[12] Hauser, J. R., Griffin, A., Katz, G., & P.Gaskin, S. (2010). Quality Function Deployment (QFD).
[13] Holman, J. (2012). Experimental Method for Engineers (8th ed.). New York: McGraw - Hill Companies.
[14] III, A. L., & Khurana, A. (1995). Quality function deployment: total quality management for new product design. International Journal of Quality & Reliability Management, 12(6).
[15] Jono. (2006). Implementasi Metode Quality Function Deployment (QFD) Guna Meningkatkan Kualitas Kain Batik Tulis.
[16] Keown, A. J., Martin, J. D., & Petty, J. W. (2014). Foundations of Finance The Logic and Practice of Financial Management (8th ed.). New Jersey: Pearson Education, Inc.
[17] Kosasih, W., Soenandi, A., & Celsia, E. (2013). Aplikasi QFD untuk Pengembangan Produk Wafer (Studi Kasus: PT Indo Sari Abadi). Journal Teknik dan Ilmu Komputer, II(7).
[18] Kosmac, A. (2015). Surface Hardening of Stainless Steels (2nd ed.). Brussels: Euro Inox.
[19] Kotler, P., & Amstrong, G. (2012). Principles of Marketing (14th ed.). New Jersey: Pearson Education.
[20] Kumar A.:Jain, P., & Pathak, P. (2013). Reverse Engineering In Product Manufacturing: An Overview. Vienna Austria: DAAAM International Scientific Book.
[21] Kurniasih, D. (2013). Analisis Perancangan Skateboard dengan Quality Function Deplopyment-House Quality. Spektrum Industri, 11(2).
[22] Makmuri, M. K., & Zahri, A. (2016). Penerapan Metode Quality Function Deployment (QFD) Pada Pengembangan Produk Locker. Simposium Nasional RAPI XV – 2016 FT UMS.
[23] Mankiw, N. G. (2003). Pengantar Ekonomi (ke-2 ed.). (W. C. Krisiaji, Ed., & H. Munandar, Trans.) Jakarta: Erlangga.
[24] Mittermeijer, E. J., & Somers, M. A. (2015). Thermochemical Surface Engineering of Steels. Oxford: Woodhead Publishing.
[25] Nabertherm. (n.d.). Thermal Process Technology II. Lilienthal: Nabertherm.
[26] Odiegel. (2007). Quality Function Deployment.
[27] Otto, K. N., & Wood, K. L. (1996). A Reverse Engineering and Redesign Methodology for Product Evolution.
[28] Otto, K. N., & Wood, K. L. (1998). Product Evolution: A Reverse Engineering and Redesign Methodology. Research in Engineering Design.
[29] Otto, K., & Wood, K. (2001). Product Design Techniques In Reverse Engineering And New Product Dvelopment. New Jersey: Prentice Hall.
[30] Pham, D., & Hieu, L. (2008). Reverse Engineering–Hardware and Software. In V. Raja, & K. J. Fernandes, Reverse Engineering. London.
[31] Prabhudev, K. H. (1988). Handbook of Heat Treatment of Steels. New Delhi: Tata McGraw-Hill Publishing Company Limited.
[32] Purushothaman, R. (2008). Evaluation and Improvement of Heat Treat Furnace Model.
[33] Putra, H. E., & Siregar, K. R. (2014). Analisis Kualitas Produk Menggunakan Metode Quality Function Deployment (Studi Kasus: Yamaha Motor Kencana Indonesia Cabang Bandung).
[34] Raja, V., & Fernandes, K. J. (2008). Reverse Engineering; An Industrial Perspective. London: British Library Cataloguing.
[35] Ramnath, B. V., & al., e. (2011). Implementation of Reverse Engineering for Crankshaft Manufacturing. V(1).
[36] Rawlings-Quinn, R. (n.d.). Quality Function Deployment (QFD): Case Study.
[37] Scheuer, C. J., Cardoso, R. P., & Brunatto, S. F. (2015). Low-temperature Plasma Assisted Thermochemical Treatments of AISI 420 Steel: Comparative Study of Obtained Layers. Material Research.
[38] Tijani, Y. A. (2008). Modelling and Simulation of Thermochemical Heat Treatment Process: A Phase Field Calculation of Nitriding in Steel. Berlin.
[39] Triwiyanto, A., Husain, P., Haruman, E., & Ismail, M. (2012). Low Temperature Thermochemical Treatments of Austenitic Stainless Steel Without Impairing Its Corrosion Resistance.
[40] Ulrich, K. T., & Eppinger, S. D. (2016). Product Design and Development (6th ed.). New York: McGraw-Hill Education.
[41] Wang, W. (2011). Reverse Engineering Technology of Reinvention. Boca Raton: CRC Press.
[42] Wood, K. L., Daniel Jensen, J. B., & Otto, K. (2001). Reverse Engineering and Redesign: Courses to Incrementally and Systematically Teach Design. Journal of Engineering Education.
[43] Yuliana, T. (2015). Analisa Kegagalan Alat Potong Pada Mesin Gergaji Putar.
[44] Zhang, K., & al., e. (2018). High-temperature pyrolysis behavior of a bituminous coal in a drop tube furnace and further characterization of the resultant char. Journal of Analytical and Applied Pyrolysis.