PENGARUH VARIASI SUHU DAN WAKTU TINGGAL PIROLISIS TERHADAP NILAI KADAR AIR ARANG KARBON DARI BIOMASSA BATANG UBI KAYU
DOI:
https://doi.org/10.34128/je.v12i2.371Keywords:
charcoal, cassava stem, moisture content, pyrolysisAbstract
Cassava stem waste, abundant in Indonesia (90% post-harvest), shows high potential as a carbon raw material due to its lignocellulose content. This research investigates the effect of pyrolysis temperature and residence time on the moisture content of the resulting carbon charcoal. Using an experimental method with a fixed-bed reactor, cassava stem biomass was pyrolyzed at varying temperatures of 300℃ and 400℃, and residence times of 15 minutes and 30 minutes, and then tested for its moisture content. The results indicate that the charcoal's moisture content tends to increase with rising temperature and residence time, attributed to an increase in the charcoal's hygroscopic properties. Nevertheless, all testing variations produced charcoal with a moisture content below 15% as per SNI 06-3730-1995, with the lowest moisture content (3.8%) achieved at 300℃ and 15 minutes.
References
[1] N. P. S. L. U. W. Yuni Ambarwati, “Pemanfaatan Limbah Batang Ubi Kayu sebagai Arang Aktif serta Pengaruh Aktivator HCL dan Waktu Aktivasi Terhadap Mutu Arang Aktif,” Surabaya, 2019.
[2] K. G. Santy et al., “Proses Pembuatan Briket Arang dari Limbah Batang Singkong dengan Menggunakan Perekat Organik,” SENTIKUIN TEKNIK, vol. 2, p. A9.1-A9.8, 2019, [Online]. Available: https://prosiding.unitri.ac.id/index.php/sentikuin
[3] L. Lismeri, P. M. Zari, T. Novarani, and Y. Darni, “Sintesis Selulosa Asetat dari Limbah Batang Ubi Kayu,” Jurnal Rekayasa Kimia & Lingkungan, vol. 11, no. 2, pp. 82–91, Dec. 2016, doi: 10.23955/rkl.v11i2.5407.
[4] S. Redjeki, A. Abdullah, and S. K. Dwitama, “Karakteristik Kualitas Biochar dari Limbah Batang Ubi Kayu dengan Proses Pirolisis,” 2019.
[5] R. Purwo Wijayanto, F. Rubian Alhikam, and I. Hendrawan, “Analisis Modifikasi Desain Reaktor pada Rancang Bangun Alat Pirolisis dan Pengujian Nilai Kalor untuk Plastik PP dan ABS,” Rekayasa Mesin, pp. 247–256, 2024, doi: 10.21776/jrm.v15i3.1493.
[6] S. Nurfaritsya Anida, I. Rusnadi, and R. Daniar, “Pengaruh Variasi Temperatur dan Waktu Proses Pirolisis Tatal Kayu Karet untuk Pembuatan Bio-Char, Bio-Oil dan Syngas sebagai Bahan Bakar,” Jurnal Pendidikan Tambusai, pp. 24569–24576, 2023.
[7] R. E. Guedes, A. S. Luna, and A. R. Torres, “Operating parameters for bio-oil production in biomass pyrolysis: A review,” Jan. 01, 2018, Elsevier B.V. doi: 10.1016/j.jaap.2017.11.019.
[8] S. A. Novita, S. Santosa, N. Nofialdi, A. Andasuryani, and A. Fudholi, “Artikel Review: Parameter Operasional Pirolisis Biomassa,” Agroteknika, vol. 4, no. 1, pp. 53–67, Jun. 2021, doi: 10.32530/agroteknika.v4i1.105.
[9] J. Park, Y. Lee, C. Ryu, and Y. K. Park, “Slow pyrolysis of rice straw: Analysis of products properties, carbon and energy yields,” Bioresour Technol, vol. 155, pp. 63–70, 2014, doi: 10.1016/j.biortech.2013.12.084.
[10] R. Xiao, X. Chen, F. Wang, and G. Yu, “Pyrolysis pretreatment of biomass for entrained-flow gasification,” Appl Energy, vol. 87, no. 1, pp. 149–155, 2010, doi: 10.1016/j.apenergy.2009.06.025.
[11] W. F. Fassinou, L. Van de Steene, S. Toure, G. Volle, and P. Girard, “Pyrolysis of Pinus pinaster in a two-stage gasifier: Influence of processing parameters and thermal cracking of tar,” Jan. 2009. doi: 10.1016/j.fuproc.2008.07.016.
[12] D. V. Suriapparao and R. Vinu, “Effects of Biomass Particle Size on Slow Pyrolysis Kinetics and Fast Pyrolysis Product Distribution,” Waste Biomass Valorization, vol. 9, no. 3, pp. 465–477, Mar. 2018, doi: 10.1007/s12649-016-9815-7.
[13] E. Sahara, W. D. Sulihingtyas, D. I. Putu, and A. Surya Mahardika, “Pembuatan dan Karakterisasi Arang Aktif dari Batang Tanaman Gumitir (Tagetes Erecta) yang Diaktivasi Dengan H3PO4,” Jurnal Kimia, p. 1, 2017.
[14] R. Hasibuan and H. M. Pardede, “Pengaruh Suhu dan Waktu Pirolisis terhadap Karakteristik Arang dari Tempurung Kelapa,” Jurnal Teknik Kimia USU, vol. 12, no. 1, pp. 46–53, Mar. 2023, doi: 10.32734/jtk.v12i1.8534.
[15] K. Dwi Lestari, R. Dwi Ratnani, Suwardiyono, and N. Kholis, “Pengaruh Waktu dan Suhu Pembuatan Karbon Aktif dari Tempurung Kelapa sebagai Upaya Pemanfaatan Limbah dengan Suhu Tinggi Secara Pirolisis,” Inovasi Teknik Kimia, vol. 2, pp. 32–38, 2017.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 ELEMEN : JURNAL TEKNIK MESIN

This work is licensed under a Creative Commons Attribution 4.0 International License.

