PENGARUH KECEPATAN LANDING TERHADAP UMUR FATIK RANGKA TRICYCLE LANDING GEAR PESAWAT UAV MENGGUNAKAN ANSYS WORKBENCH
DOI:
https://doi.org/10.34128/je.v7i1.118Keywords:
ansys workbench, kecepatan landing trycle landing gear, UAV, umur fatikAbstract
The landing gear is one crucial component in a UAV aircraft structure. Landing gear serves as the main supporting component of aircraft load when landing and take off. The paper aims to examine the effect of landing speed on the fatigue life of the tricycle landing gear of the UAV aircraft. The design of the tricycle landing gear frame uses Autodesk Inventor Professional 2017, while the analysis of fatigue life uses Ansys Workbench software. Landing speeds is varied 4 m/s, 6 m/s, 8 m/s, and 10 m/s. The fatigue life prediction using Gerber means stress theory with a fully-reserved type of loading. The landing gear material uses Aluminum alloy 6061. The simulation results show that the tricycle landing gear frame with landing speeds of 4, 6, 8, and 10 m/s has a minimum fatigue life of 1.00 x 108, 8.93 x 107, 4.30 x 106, 7.17 x 105 cycles. While the tricycle landing gear frame with landing speeds of 4, 6, 8, and 10 m/s has a minimum safety factor of 2.39, 1.59, 1.19, and 0.95. It means that the relationship between landing speed is inversely proportional to the fatigue life of the landing gear frame. The higher the landing speed, the lower the fatigue life of the landing gear frame. At a landing speed of 10 m/s, the landing gear frame fails to reach a minimum fatigue life of 1 million cycles.
References
Azevedo, C. R. D. F., & Jr, E. H. (2002). Fracture of an aircraft ’ s landing gear. 9, 265–275.
Bagnoli, F., & Bernabei, M. (2008). Fatigue analysis of a P180 aircraft main landing gear wheel flange. Engineering Failure Analysis, 15(6), 654–665. https://doi.org/10.1016/j.engfailanal.2007.10.003
Bagnoli, F., Dolce, F., Colavita, M., & Bernabei, M. (2008). Fatigue fracture of a main landing gear swinging lever in a civil aircraft. 15, 755–765. https://doi.org/10.1016/j.engfailanal.2007.06.012
Chen, X., & Liu, Y. (2019). Finite Element Modeling and Simulation with Ansys Workbench (2nd ed.). Taylor & Francis Group.
Dutta, A. (2016). Design and Analysis of Nose Landing Gear. International Research Journal of Engineering and Technology (IRJET), 3(10), 261–266.
Imran, M., M, S. A. R., & Haneef, M. (2015). FE Analysis for Landing Gear of Test Air Craft. Materials Today: Proceedings, 2(4–5), 2170–2178.
Infante, V., Reis, L., & Freitas, M. De. (2014). Failure analysis of landing gears trunnions due to service. Engineering Failure Analysis, 41, 118–123. https://doi.org/10.1016/j.engfailanal.2014.02.011
Jeevanantham, V., Vadivelu, P., & Manigandan, P. (2017). Material Based Structural Analysis of a Typical Landing Gear. International Journal of Innovative Science, Engineering & Technology, 4(4), 295–300.
Krstic, B., Rebhi, L., Trifkovic, D., Khettou, N., & Dodic, M. (2016). Investigation into recurring military helicopter landing gear failure. EFA, 63, 121–130. https://doi.org/10.1016/j.engfailanal.2016.02.018
Kumar, R. R., Dash, P. K., & Basavaraddi, S. R. (2013). Design and analysis of main landing gear structure of a transport aircraft and fatigue life estimation. International Journal of Mechanical and Production Engineering, 01(04), 22–26.
National Oceanic and Atmospheric Administration. (2017). The Future of Climate Research. Retrieved from https://celebrating200years.noaa.gov/visions/climate/image3.html
Ossa, E. A. (2006). Failure analysis of a civil aircraft landing gear. Engineering Failure Analysis, 13(7), 1177–1183. https://doi.org/10.1016/j.engfailanal.2005.04.008
Ossa, Edgar A., & Paniagua, M. (2016). Suspension and landing gear failures. In Handbook of Materials Failure Analysis with Case Studies from the Aerospace and Automotive Industries. https://doi.org/10.1016/B978-0-12-800950-5.00008-9
Parmar, J., & Acharya, V. (2015). Selection and Analysis of the Landing Gear for Unmanned Aerial Vehicle for Sae Aero Design Series. International Journal of Mechanical Engineering and Technology, 6(2), 10–18.
Prakash, J. A., Joshua, P., & Santosh, D. (2018). Design and Analysis of Aircraft Landing Gear Axle. International Journal of Advance Research, Ideas and Innovations in Technology, 4(2), 1550–1555.
Swarnakiran, S., & Rohith, S. (2018). Numerical Analysis Of Nose Landing Gear System. International Research Journal of Engineering and Technology (IRJET), 05(04), 1978–1984.
V. Dobrovolsky, K. Z. (1978). Machine elements : a textbook. Moscow: Peace Publisher.
Wibawa, L. A. N. (2018). Desain dan Analisis Kekuatan Rangka Tricycle Landing Gear UAV Menggunakan Metode Elemen Hingga. Mechanical, 9(2), 33–37.
Wibawa, L. A. N. (2019a). Pengaruh Diameter Baut Terhadap Kekuatan Rangka Main Landing Gear Pesawat UAV Menggunakan Metode Elemen Hingga. Journal of Polimesin, 17(1), 26–32.
Wibawa, L. A. N. (2019b). Pengaruh Kecepatan Landing Vertikal Terhadap Ketahanan Beban Impak Rangka Landing Gear Menggunakan Metode Elemen Hingga. Angkasa: Jurnal Ilmiah Bidang Teknologi, 11(1), 35–42. https://doi.org/10.28989/angkasa.v11i1.434
Wibawa, L. A. N. (2019c). Pengaruh Pemilihan Material Terhadap Kekuatan Rangka Main Landing Gear Untuk Pesawat UAV. Journal Technology and Implementation Bussines, 2(1), 48–52.
Wibawa, L. A. N. (2019d). Pengaruh Susunan dan Jumlah Lubang Baut Terhadap Kekuatan Rangka Main Landing Gear Untuk Pesawat UAV. Flywheel: Jurnal Teknik Mesin Untirta, 5(1), 46–50.